
DASH_library COMMAND REFERENCE

DASH_library (version 2.0) – sqf-library for Single-Player mode, targeted to
extend scripting possibilities of OFP 1.99 (CWA).
Scripters, mission makers, addon creators and mod builders can use now more than 280
functions in their CWA projects

There are 20 categories in test missions:

• First steps – the most important system functions;
• Arrays – generic array processing methods;
• Convertion – make one thing from another;
• Custom EH – event handler-like scripts;
• Environmen – weather, landscape params and so on;
• EH – functions to use with Event Handlers;
• Geometry – angles, distances etc;
• Groups and units – ranks, call signs...;
• GUI – methods to work with GUI controls;
• Indexes – tricks with array indexes ;
• Inventory – weapons and ammo;
• Machine Learning – Machine Learning methods;
• Markers – map markers;
• Math – math fns and matrix operations;
• Random – random number generation and random element selection;
• S earch – find something good in array;
• Sort – changing an order of array's elements;
• S ystem – deals with variables and user-defined properties;
• T ext – strings and string arrays;
• Vehicles – vehicles and crews

DIFFERENCES WITH PREVIOUS VERSION (2.0 vs 1.3)

 ...in the library itself...

No gamelogics, no code modules.

All functions besides 3 global ones are stored in stringtable.csv;

Most of the global vars moved to big global array;

Text «databases» moved from code to separate sqf-files;

Added ~90 fns, fixed/extended ~20 and removed ~20 ones;

 ...in supporting files...

Fully rebuilded test missions;

Notepad++ scripts instead of console utilities

INSTALLATION

CWA 1.99 required.
Put DASH_library.PBO file to Addons folder in game root or to the same folder of any
mod folder you like

Drop test missions here:
…\Users\YourProfile\missions\ and put test campaign to Campaigns folder in game root

If you want to use Fwatch-dependent functions — just load version 1.13 from
http://ofp-faguss.com/fwatch/, install to CWA root folder and make shortcuts for all
neccessery mods in this style:
 ...\fwatchCWA.exe" -nosplash -nomap -mod=@ECP;@EKLMN;@EPRST
An interesting option: -player=YourProfile

INITIALIZATION

Add this code to init.sqs or player's init field:
сall localize «dashlib»

Global resource array will be created as well as 2 other global vars and 3 functions,
which can accurately upload all other fns you need.
There is no overhead, so you can put it to the event handler «Init» in config.cpp
files of some units and than place these units on map in any numbers – the library will
be initiated only once

FNS UPLOADING

With loadFns you can easily upload all other functions without adding any garbage to
the global variable scope

The simplest way:
[«print», «test»] call loadFns
print and test, will be uploaded - they are useful for script debugging.
In DASH_library's test missions they are already loaded from the init.sqs.
Attention: names are always in lower case

To protect other CWA projects from DASH_Library's globals and vice versa
you can use aliases and tags

«FN_» call setProjectTag

From now on all the crap you upload with loadFns will starts from «FN_»
[«splitbyrule», «inverse», «allvariants»] call loadFns
creates FN_splitByRule, FN_inverse and FN_allVariants

Alternative is to use functions with custom names:
[«pos2grid»,«getMapQuad»] call alias

For some aims you can work without «globalization» at all.
In stringtable.csv all the functions are stored with names like f _nameinlowercase:
player call localize «f_vartype»
It's the most frequent method used for inner needs of DASH_library

These are the actions you won't saw in the most of the test mission examples, I hide
'em to protect your mind from seeing almost the same things 250+ times. 2 times will be
enough – here and in test mission «Examples (part 1).Intro», see «First steps»
category

http://ofp-faguss.com/fwatch/

DESCRIPTION OF FUNCTIONS AND CONSTANTS

First steps

[name_in_dashlib, name_u_prefer] call alias – global function, loads another function
from stringtable.csv under name_u_prefer. An alternative to prefix usage – if you have
some global vars in your project with the same names like some of the DASH_library
functions – you can use these fns under aliases. Returns true, if function was found

call localize dashlib – DASH_Library initialization. Must be called at first.
Creates:
global resource array DASH;
global request array DASH_EH_Quey to handle «Custom Event Handlers»;
sideUnknown constant of type «side»;
global functions: loadFns, setProjectTag and alias

It's convinient to run it from init.sqs or from player's init field.
If the line call localize «dashlib» will be added to «Init» EH in some unit's config
file, it doesn't matter, how many units of this type will be placed on map - dashlib
can be run only once. And if you have no DASH_Library.pbo, this code will just do
nothing without error messages

function_name_in_lowercase call loadFns
alternative syntax:
array_of_fns_names call loadFns – global function to load another fns from
stringtable.csv, returns 2-element array:
0 - «OK», if all functions were loaded, error report otherwise;
1 – array of loaded fns names.
Shy result - one or more functions from stringtable.csv becomes global

correctVarName call setProjectTag – global function, sets the global prefix to load
functions with loadFns. Returns true, if argument was a string

Practice: «Examples (part 1).Intro»

Arrays

ArrayOfArrays call allVariants – all combinations of subarray elements: for
[[true,false], [1,2,3], [«a», «b»]] it will be 12 subarrays from [true, 1, «a»] to
[false, 3, «b»]

Array call array2Pairs – convert array with even length like
[name1, v1, name2, v2, name3, v3] to «key-value» pairs
[[name1, v1], [name2, v2],[name3, v3]].
Works good with addWeaponCargo/addMagazineCargo.
You can create functions with variable argument number and ORDER:
[«radius», 2000, «height», 400, «EMP», true] call nuclearExplosion ==
[«EMP», true, «height», 400, «radius», 2000] call nuclearExplosion

[Arr1, Arr2] call arrayAddArray – add one array to another element-by-element
Returns an array

[Arr, Nmb] call arrayAddNumber – add number to each number in array.
Returns an array

[Arr1, Arr2, expr] call arrayFncArray – apply expr for each pair of correspondent
elements of 2 equal-length arrays. Returns an array

[Arr, Var, expr] call arrayFncScalar – apply expr for each pair [Arr(i), Var].
Returns an array

NestedArray call arrayMean – array of arithmetic averages of NestedArray by each
dimension. Returns an array with the same length as (NestedArray select 0)

[Arr1, Arr2] call arrayMultArray – multiply one array to another element-by-element.
Returns an array

[Arr1, Arr2] call arraysAreIntersecting
alternative syntax:
[Arr1, Arr2, ignoreCase] call arraysAreIntersecting – true, if arrays have at least 1
common element. If ignoreCase = true, then function will ignore string case.
It will make sense if you have array of magazines/weapons of unit and want to check
if there are some common elements in this array and array of strings like
[«m16», «m4», «aK47»]

NestedArray call arraySimplify – decrease nesting depth of array to 1.
Array of arrays will become simple array. In case of simple array it will just copy it

[Arr1, Arr2] call arraysIntersection
alternative syntax:
[Arr1, Arr2, ignoreCase] call arraysIntersection – return elements of Arr2,
found in Arr1.
If ignoreCase = true, then function will ignore string case.
This option is usefull if you want to work with class name arrays

[Array1, Array2] call compareArrays – compares 2 arrays element-by-element, returns
true, if Array1 = Array2. Works with numeric, string, side and object arrays.
Arrays of different length are always not equal

[Array1, Array2] call compareHeaps – compares 2 arrays, not giving the hell to
element order. Case sensitive, but can work with boolean and mixed arrays.
Can compare magazines of unit in 2 different time moments

Var call isArray – returns true, if Var is array. You can also use not-array check:
_this in [_this]

[start, end, step] call makeArray
alternative syntax:
[start, end] call makeArray – array of ascending/descending numbers, starting from
start, not exceeding end, with given step. Default progression step==1

Array call pop – remove last element from Array and return it. Array will be resized

[Integer, Any] call populate - make an array of Integer copies of element Any.
If Any is an array then array copies will be used (instead of references)

NumericArray call product – product of all array elements

[Array, element] call pushForward – push element to the front of array.
Return no result, array will be resized

[Array, element] call pushNew – if an element is not in array – add 'em to the end.
If success - returns true

[Array, Old, New] call replace – in Array it will replace all instances of Old
with New. Returns new array

[Array, ArrOld, ArrNew] call replaceM – replaces each occurance ArrOld elements in
Array with correspondent element from ArrNew. Returns new array

[Array, Condition] call splitByRule - split Array into 2 parts according Condition.
The result is 2-element array, an elemets, satisfying the Condition will be in first
one

Array call split1212 – split Array into 2 parts, the elements with odd indexes will be
in the first subarray, an even elements will be in second one.
If an initial array is like [key1, val1, key2, val2, key3, val3...], then after
split1212 keys and values will be in different subarrays

[Array, NestedArray] call splitByArrays - distribute elements of Array between
subarrays of NestedArray (round robin)

NumericArray call sum — sum of array elements

[Array, N] call take - if N>0 then take N first elements from Array,
if N<0 then take N last elements. Returns an array

ArrayOfArrays call transpose – matrix columns become rows, rows becomes columns.
All subarrays must have the same length. Example: [[1, 2, 3], [4, 5, 6]] ==>
[[1, 4], [2, 5], [3, 6]]

Array call typeList — returns 2-element array:
0 - array of unique elements;
1 – count of each element in Array
Function is case-sensitive

Array call unique — returns unique (nonrepeating) elements from Array.
An Array can contain numbers, strings, objects, sides or groups, types can be similar
or mixed. Case-sensitive

[Vals, Numbers] call unwrapList — creates simple array, with Numbers[0] of Vals[0],
Numbers[1] of Vals[1]...An antipode of typeList function

[NumArray1, NumArray2] call withoutN – an alternative to NumArray1 - NumArray2.
[[4, 4, 60], [4, 21]] call withoutN
returns [4, 60]

[StrArray1, StrArray2] call withoutS – an alternative to StrArray1 - StrArray2.
[[«m4», «m4», «m60»], [«m4», «m21»]] call withoutS
returns [«m4», «m60»]

Practice: «Examples (part 1).Intro»

Convertion

Angle call angle2compass — direction in degrees – to compass heading

Angle call angle2hour — direction in degrees – to o'clock angle (1-12)

Array0 call any2pos
alternative syntax:
Object1 call any2pos
alternative syntax:
Group2 call any2pos
alternative syntax:
«Marker3» call any2pos – returns 3D position

[FloatValue, StrOld, StrNew] call convert - converts FloatValue from one length units
to another. Available units: «ml», «yd», «ft», «in», «cm», «m», «km» — miles, yards,
feets, inches, centimeters, meters, kilometers

StrQuad call grid2pos — map guad name — to [X,Y] coordinates.
With mods @WGL or @Invasion44 map grid of the most islands becomes 6-digit, grid2pos
function use correct format automatically

Str call miltime2daytime – string with US army «military time» like «0730» - to real
time in range [0.0000...23.9999]

pos call pos2grid — position pos — to map quad name (for example, «Eс58»).
With mods @WGL or @Invasion44 map grid of the most islands becomes 6-digit, so
something like «114098» will be returned

[dTime, TimeFormat] call time2string
alternative syntax:
[dTime] call time2string - convert dTime
(in hours)to string, according TimeFormat.
,
Formats available: «HH», «HHMM», «HH:MM», «HH:MM:SS», «HH:MM;SS:MM».
If TimeFormat not defined then used default «HHMM»
(«military time» in uncle Sam's army)

Practice: «Examples (part 2).Intro»

Custom Event Handlers (CEH)

[Owner, CEHType, CodeToRun] call AddCustomEH
alternative syntax:
[ArrayOfOwners, CEHType, CodeToRun] call AddCustomEH
alternative syntax:
[Owner, CEHType, CodeToRun, Path2ScriptFolder] call AddCustomEH
alternative syntax:
[ArrayOfOwners, CEHType, CodeToRun, Path2ScriptFolder] call AddCustomEH
– adds one or several owners (units or groups) to monitoring script, which calls
CodeToRun expression on event EHType.
The function is similar toAddEventHandler command

Inner script will be started with the first call of AddCustomEH with the type CEHType
and it will be ended with the last owner removing
In CodeToRun is :
_this select 0: EH owner;
_this select 1: old value of monitored parameter;
_this select 2: new value of monitored parameter.
EHs «weapons» and «magazines» (fires on equipment changing)
returns more values:
first 3 are standard;
_this select 3: added weapons/magazines;
_this select 4: dropped weapons/magazines

To avoid FPS drop on mass CEH adding I recommend to use array of owners as 0th argument
instead of using forEach.
2 or more CEHs of the same type when added to one unit will override each over, so only
the last will work.

Available CEH types:

«ammoprimary» — changed ammo count for primaryWeapon;
«behaviour» — behaviour change;
«rating» — rating change;
«canfire» — ability to fire on/off;
«canmove» — ability to move on/off;
«canstand» — ability to stay on/off;
«crew» — crew changed;
«crew3» — actual crew changed (driver, gunner or commander), works even for in-vehicle

 rearrangements;
«freefall» — free fall detection;
«health» — health changed (+-);
«magazines» — magazines changed (the order is not taken into account);
«primary» — primary weapon changed;
«secondary» — secondary weapon changed;
«weapons» — weapon set changed (something added and/or removed)

Path2ScriptFolder optional param allows the scripter to use his own folder with
custom Ehs. All CEHs scripts («\DASH_library\Sqs\EH” folder) have 2 areas marked for
easy editing and you better don't touch the rest of code.

;Start modify 1 ---------------------

_type="formation!"
_get={formation _this};
_delay=0.367

;End modify -------------------------

_type — CEH name, used to add/remove CEH and to set it's request time.
_get — expression, calculated every _delay seconds, the result can be of any type.
The simplest case is when the result is number, string, side, group or object:

;Start modify 2 -----------------------

?(_w!=_w2):[_ui, _w, _w2] call (_e select _i)

;End modify ---------------------------

_ui — event owner (usualy unit or group), _w — old value, _w2 — new value.

Editable areas of “weapons” CEH:
;Start modify 1 ---------------------

_type="weapons"
_get={weapons _this};
_delay=0.896

;End modify -------------------------

.......

;Start modify 2 ---------------------

_w3=_w2-_w
_w4=_w-_w2
?(count(_w3+_w4)!=0):[_ui, _w, _w2, _w3, _w4] call (_e select _i)

;End modify -------------------------

[Owner, EHType] call RemoveCustomEH – similar to
unit RemoveAllEventHandlers type command.
Owner (unit or group) will be «retired» from the EHType supporting script.
FPS drop can be caused by mass usage of this function

[EHType, Number] call SetCEHDelay – set time delay for custom EH of type EHType.
Every CEH has embedded recommended request delay, which can be decreased for faster
reaction or increased to fight with FPS drop

Practice: «Examples (part 3).Intro»

Environment

Building call countBuildingPos — number of available positions in Building

call countStatic – number of static objects on map

call daylight – returns 0, if called at night, 1 — if called at day time and returns
0.5 — if it's twilights. Precizion is 10 seconds. To get relevant string, use something
like that:
[«night», «twilights», «day»] select (2*call daylight)

fog – current fog level.
DASH_library without Fwatch sets it to 0,
with Fwatch 1.13 on, fog will be set according weather info from mission.sqm.
Use setFog2 function instead of setFog command!

[Pos, R] call groundSlope
alternative syntax:
[Pos, R, Step] call groundSlope – average slope and direction of maximal slope in
circle with center Pos and radius R, search Step (in degrees) is optional, default
value is 15

[Position, Radius] call inForest - true, if there is some forest in circle with given
Radius near given Position. Several trees are not considered as a forest

Obj call inTown - returns true, if object is in the town/village.
Sometimes it doesn't work with small villages because there are no enterable buildings
there

Pos call inWater - returns true, if the position is under water

call isWinter - returns true, if season is winter.
Precision of the method is about a week

Pos call nearestVillage — returns 3-element array:
0 — name of the nearest village/city;
1 — 2D position of it's center;
2 — how far it from given Pos
Works on 25 islands present in database

overcast – cast level.
Without Fwatch DASH_library sets cast 0.5,
with Fwatch 1.13 weather info from mission.sqm will be taken into account.
Use setOvercast2 function instead of setOvercast command!

[Pos, Ra] call overObstacle
alternative syntax:
[Pos, Ra, ObjectArray] call overObstacle – returns true, if inradius Ra from the
position Pos there is obstacle which makes impossible to land chopper here.
BlackList of harmless obstacles ObjectArray can be defined as argument (2)

rain – rain level. DASH_library sets rain level=0, you should use setRain2 function
instead of setRain command if you want to change it

Number call setTime — set day time to Number

[Sec, Level] call setFog2 – similar to Sec setFog Level command,
but it makes possible to check fog level at any time with fog function. Time to change
is in seconds, fog level can be from 0 (clean air) to 1 (heavy fog)

[Sec, Level] call setOvercast2 – similar to Sec setOvercast Level command, but it
makes possible to check cast level at any time with overcast function.
Time to change is in seconds, cast level can be from 0 (clean sky) to 1 (low dark
clouds)

[Sec, Level] call setRain2 – similar to Sec setRain Level command,
but it makes possible to check rain level at any time with rain function.
Time to change measured in seconds, rain level can be from 0 (no rain) to 1 (heavy
shower)

StrVillage call villagePos — returns the position of given village if it exists on
current map. Returns [0,0] if this village was not found

wind – returns 2-element numeric array:
0 - wind direction in degrees;
1 — wind speed in m/s

windVector – returns 2-element numeric array:
0 - wind speed X component (м/s);
1 - wind speed Y component (м/s)

Practice: «Examples (part 2).Intro»

Event Handlers

[UnitInfo, oldAnim1, newAnim1, oldAnim2, newAnim2...] call overrideMoves -
overrides a list of animations for AI and player.
UnitInfo – unit, unit array, group or trigger.
Works good with movement animations, works bad with the rest, in this case it's often
fires AFTER animation to be replaced then it must occure INSTEAD of it

[UnitInfo, oldAmmo1, newAmmo1, oldAmmo2, newAmmo2...] call replaceBullets -
it replaces fired projectiles of one types with other projectile types.
UnitInfo – unit, unit array, group or trigger, empty strings means what projectile
will be simply removed without replacement

_this call shotGeometry — recommended to use in «fired» EH to get more information
about shot. Returns an array:

0 — fired projectile (object);
1 — it's starting position;
2 - 3D velocity vector (m/s);
4 — absolute speed (m/s);
5 - azimuth (degrees);
6 — elevation angle (degrees);

Practice: «Examples (part 3).Intro»

Geometry

[pos1, pos2, pos3] call clockwiseOf – returns true, if movement from pos1
to pos2 and than from pos2 to pos3 is clockwise.
Another application: if the line determined with first 2 points, then resulting «true»
means «pos3 is to the right from the line», «false» means «to the left»

[pos1, pos2, K] call delimPoint
alternative syntax:
[pos1, pos2] call delimPoint – point between two 2D positions
dividing this line segment with ratio K, if not defined then K=1/1

[Watcher, Target] call dir2obj – direction from object Watcher to object Target

[Pos1, Pos2] call dist2d – distance between 2 flat (2D) positions

[Pos1, Pos2] call dist3d – distance between 2 3D positions.
It's better if positions are measured At See Level (f.e. with GetPosASL)

[Pos1, Pos2] call dirToPos – direction from one position to another

Obj call dirOfMove — azimuth of object Veh movement

Pos call elevation – altitude of position At See Level

[obj1, obj2] call elevationAngle – vertical angle from one object
to another. If is obj1 is higher than obj2 – the result will be > 0

[Watcher, Target] call facingDiff — difference between direction of Watcher
and angle of beam Watcher - Target

[Shelter, Guard, StepBack] call hiddenPos – find position
in StepBack meters after object Shelter, to hide from Guard
(it's supposed what Shelter is big enough)

[pos, Range, Step] call highestLowest – the highest and lowest Asl positions in quad
with center pos and size Range, step of measurment Step

obj call hrzSpeed — horizontal component of object's speed (m/s)

[obj1, obj2] call inFOV
alternative syntax:
[obj1, obj2, FOV] call inFOV – true, if obj1 is in the Field Of View (FOV) of obj2,
default FOV value is 86 degrees

[Pos1, Pos2] call lineParams – a and b factors
of line-representing equation Y=a*X+b, where the positions Pos1 and Pos2 lay at

[Unit1, UnitArray] call nearestFromArray
alternative syntax:
[Pos1, UnitArray] call nearestFromArray – nearest UnitArray element (object)
from Unit1 / Pos1.

[obj1, obj2] call relPos2d — position of obj2 in coordinate system with base obj1,
Y axis direction == obj1 direction

[Obj, Height] call setZ – set altitude of object (AGL height), can be < 0

[Pos1, Pos2, Pos3] call triangleArea – area of triangle defined with 3 positions

Practice: «Examples (part 2).Intro»

Groups and units

unitArray call any2Units
alternative syntax:
groupBravo call any2Units
alternative syntax:
trigger1 call any2Units – unit array/group/trigger – to unit array

Unit call boss — unit becomes leader in his group

[ClassName, pos, grp] call createUnit2
alternative syntax:
[ClassName, pos, grp, initString] call createUnit2
alternative syntax:
[ClassName, pos, grp, initString, skill] call createUnit2
alternative syntax:
[ClassName, pos, grp, initString, skill, strRank] call createUnit2 –
similar to "createUnit" command, but returns unit added and you can get rank value
of that soldier. If squad number==12 then ObjNull will be returned

UnitArray call enableQueryGroups – creates inner array of groups to make getGroups
function work. Pointless under Fwatch 1.13+

UnitArray call enableQueryRank – enables to query ranks of unit array.
Not required to use with units created with createUnit2

UnitArray call filterGroups – get all groups from the unit list

UnitArray call getBoss – returns person with highest rank from UnitArray.
If there are several soldiers of that rank – the most skilled one will be returned

Unit call getGroupID
alternative syntax:
Group call getGroupID – array of 2 elements – callsign and group color of
unit or group

Side call getGroups
alternative syntax:
SideArray call getGroups – list of groups of given side(s).
To work without Fwatch you need big trigger of activation type Any - Present and
enableQueryGroups function.

Group call getGroupSpeed – average speed of group members

Group call getGroupSpread – approximate diameter of group

Unit call getIntSide – returns 0 for east, 1 for west, 2 for resistance,
3 for civilian

Unit call getRank – rank of the unit (string)

Unit call getRankID – numeric value of unit's rank

[unitArray, surName] call getUnitByLastName – returns unit with last name surName, if
he is present in unitArray or objNull otherwise

Grp call groupIsCargo – checks if all units aof group are mounted on vehicles

[Unit1, Unit2] call isEnemy – true if Unit2 is a visible enemy of Unit1

[UnitArray, Unit] call joinSilent – join units to the Unit without radio messages. To
avoid problems with enableRadio you can use function enableRadio2 instead

Grp call mostInjured – most injured alive unit in Grp

sideUnknown – additional side, the side of projectiles, triggers and objNull

unit call squadNumber – return unit's number in squad — this number is present
in his radio messages

GrpLeader call squadOrder – units of GrpLeader in the ascending order of their numbers.
Group leader is always 0-th

[Unit1, Unit2] call swapIdentity – swap 2 personalities (face+voice+glasses) for
Unit1 и Unit2, double use restores status-quo.
works good in PBOed missions and campaigns, SaveGame needed in editable missions

[grp, pos] call teleportGroup
alternative syntax:
[grpLeader, pos] call teleportGroup – whole group will be teleported to the position
pos. No one will leave his transport, the relative distances will be saved.
Leader's position will be pos

[UnitArray, Angle] call watchDir – make all units watch in the same direction.
If Angle==-1, units will watch task will be completed

Practice: «Examples (part 1).Intro», «TestCampaign»

GUI

[minIndex, maxIndex] call allCtrls — find idc of all visible GUI elements
in range from minIndex to maxIndex inclusive. Returns an array

[idc, StringArray] call fillBox — clears and fills ListBox or ComboBox idc
with strings from StringArray

Practice: «Examples (part 1).Intro»

Indexes

[Array, Index] call idxDelete – remove element with this index from the array.
Returns no result, array will be resized

[Array, IntegerArray] call idxDeleteM – remove elements with indexes IntegerArray from
the Array. Returns no result, array will be resized

NumericArray call idxMax — find the index of maximal array element

NumericArray call idxMin — find the index of minimal array element

[Array, Index] call idxToEnd
alternative syntax:
[Array, Indexes] call idxToEnd - shift elements with given Indexes to the end of Array.
Returns no result, array will be changed

[Array, Index] call idxToStart
alternative syntax:
[Array, Indexes] call idxToStart - shift elements with given Indexes to the head of
Array. Returns no result, array will be changed

[Array, Indexes] call idxTake – returns elements with given Indexes from Array.
Returns new array

Practice: «Examples (part 1).Intro»

Inventory

Unit call ammo3 – modification of ammo command. Returns 3-element numeric vector:
0 - ammo for primary weapon,
1 - ammo for secondary weapon
2 - pistol ammo
If some of these weapon slots is empty then correspondent value will be -1

Man call emptySlots - how many empty slots for primary and secondary weapon mags has
unit Man

Man call emptySlots2 — returns 2-element numeric vector -
0 - empty slots for primary and secondary weapon mags of Man;
1- empty slots for pistol magazines of Man

Man call handgun — pistol-slot weapon of Man.
Returns «» if no such item. Pistol-slot item is not exactly pistol, say, if you uses
SLX_Melee you maybe need additional check if it's pistol or not

[UnitInfo, WeaponInfo, magazines] call invAdd
alternative syntax:
[UnitInfo, WeaponInfo, mag1, amount1, mag2, mag3, mag4, count4...] call invAdd –
weapon(s) and magazine(s) will be added to UnitInfo.

UnitInfo can be a unit, unit array, group or trigger. WeaponInfo can be weapon name or
an array of weapon names. All consequent elements are magazine info – array of magazine
names or several strings and numbers

[UnitInfo, WeaponCargoInfo, MagazineCargoInfo] call invAddCargo - weapon(s) and
magazine(s) will be added to cargo section for each UnitInfo element.
WeaponCargoInfo can be like that: [«LAWLauncher», 4, «M16», 10, «M21», «M60», 2],
if there is no amount after class name — default value of 1 will be used,
or just be an array of weapon names. MagazineCargoInfo has the same structure

[UnitInfo1, UnitInfo2] call invClone — copy inventory of argument (0)
(units in UnitInfo format) and set this inventory for each unit defined by UnitInfo2.
If count of UnitInfo1 units is less then count UnitInfo2 units, then the rest units of
UnitInfo2 will be equiped like the last one from UnitInfo1

Unit call invCreate
alternative syntax:
ClassName call invCreate – creates inventory array — nested array of weapons and
magazines of the given unit. The 2rd variant of this function is not recommended to
use in big loops because of camcreate command usage. Created inventory can be used this
way: [[UnitInfo]+Inventory] call invSet

Unit call invCreate2
alternative syntax:
ClassName call invCreate2 – similar to invCreate, but also returns «abilities» like
«Put» or «Throw»

UnitInfo call invGet: creates inventory — array of 2 elements: all weapons and all
magazines of UnitInfo. UnitInfo may be a group, unit, units or trigger

UnitInfo call invGet2 – similar to invGet2, but also returns «abilities» like
«Put» or «Throw»

[UnitInfo, WeaponInfo, magazines] call invOwners
alternative syntax:
[UnitInfo, WeaponInfo, mag1, amount1, mag2, mag3, mag4, count4...] call invOwners –
finds owners of given weapons with given magazines among UnitInfo units.
UnitInfo may be a group, unit, units or trigger. WeaponInfo can be weapon name or
weapon name array. The rest elements are considered as magazine names and counts

[UnitInfo, WeaponInfo, magazines] call invRemove
alternative syntax:
[UnitInfo, WeaponInfo, mag1, amount1, mag2, mag3, mag4, count4...] call invRemove –
removes weapons and magazines in UnitInfo.
UnitInfo may be a group, unit, units or trigger. WWeaponInfo can be weapon name or
weapon name array. The rest elements are considered as magazine names and counts

[Unit, WeaponList, MagazineList] call invQueryCargo – returns 2 arrays - how many units
of each weapon from WeaponList and how many units of each magazine from MagazineList
are stored in cargo section of Unit. Works in campaigns only

[UnitInfo, WeaponInfo, magazines] call invSet
alternative syntax:
[UnitInfo, WeaponInfo, mag1, C1, mag2, mag3, mag4, C4, mag5..] call invSet –
sets given weapon(s) and magazines to UnitInfo.
UnitInfo may be a group, unit, units or trigger. WeaponInfo can be weapon name or
weapon name array. The rest elements are considered as magazine names and counts

[UnitInfo, WeaponCargoInfo, MagazineCargoInfo] call invSetCargo - sets given weapon(s)
and magazines to cargo sections of UnitInfo.
UnitInfo may be a group, unit, units or trigger.
WeaponCargoInfo can looks like: [«LAWLauncher», 3, «M16», 10, «AALauncher», «M60», 4],
if there is no count after given classname – default value (1) will be used, or just be
an array of weapon names. MagazineCargoInfo has the same structure

Unit call isRTO – true, if Unit has radio

Unit call isMGSoldier – true, if Unit has machine gun

Unit call isSniper – true, if Unit has sniper riffle

Unit call isLaserSoldier – true, if Unit has laser designator

Unit call isAASoldier – true, if Unit has portable SAM

Unit call isRPGSoldier – true, if Unit has reloadable grenade launcher like RPG

Unit call isATSoldier – true, if Unit has heavy AT launcher

[UnitArray,Type] call getSpecialist
alternative syntax:
[Grp,Type] call getSpecialist – returns the first found unit with such equipment Type;
There are 7 different types: «RTO», «AA», «LD», «MG», «SNP», «RPG», «AT»

[UnitArray,Type] call getSpecialists
alternative syntax:
[Grp,Type] call getSpecialists - returns all found unit with such equipment Type;
There are 7 different types: «RTO», «AA», «LD», «MG», «SNP», «RPG», «AT»

MagazineName call magSize – determines, how many slots does it need to keep this ammo
in inventory

[Source, WeaponType] call queryWeaponTypeCargo – returns 2-element array – array of
weapons of given type in the ammobox/vehicle/weaponHolder Source and correspondent
number of units of each weapon class. Available types: «snp», «mg», «rpg», «at», «aa»,
«ld», «rd» - sniper riffles, machineguns, RPG7-like grenade launchers, heavy grenade
launchers like AT4, portable SAMs, laser designators and radios

Man call radioState – the state of unit's radio.
 >0: radio charged, 0: no batteries, -1: unit has no radio

Practice: «Examples (part 3).Intro», «TestCampaign»

Machine Learning

[Data, ClassLabels] call ANN1Learn
alternative syntax:

[Data, ClassLabels, Ages] call ANN1Learn – simple 1-layer neural net,
can solve simple classification problems with good speed.
Data — array of arrays (points in multydimensional space of numeric patterns).
Subarrays lengths==number of patterns.
Array ClassLabels contains integers 1 and 2 — labels for 2 classes of some objects.
Ages — number of learning circles, default value = 200.
Returns a simple array: weight of each pattern + [bias weight]

[Weights, NewPoint] call ANN1Use – use Weights, calculated by ANN1Learn,
to find the class number of unclassified point NewPoint.
Returns 1 or 2

[Weights, NewPoints] call ANN1UseM – use Weights, calculated by ANN1Learn,
to find the class numbers of all points in array NewPoints.
Returns an integer array of 1 and 2

Array_0_1 call boolNot – turn each zero in pseudo-boolean array to 1 and vice versa

[Array_0_1, anotherArray_0_1,strCode] call boolOperation – perform dyadic boolean
operation on each pair of corresponded array elements.
Arrays must contain 1 and 0 only. StrCode can be the one of 8 possible strings,
each operation has a synonym:
«and» - «&&», «or» - «||», «xor» - «!=», «equal» - «==»

6 functions below is a measures of difference between 2 points in multidimensional
space of numeric patterns.
All but h_dist works with numeric data.
All but cos_dist returns numbers in range [0, +inf]

[NumArray1, NumArray2] call che_dist - «chess» or Chebyshev distance =
maximal of pairwise distances between 2 arrays. Not very accurate, but fast.

[NumArray1, NumArray2] call cos_dist – cosine distance.
Popular in fuzzy text match.
Geometrical mean: if NumArray1 и NumArray2 - lines, defined by 2 points each, then 1-
([NumArray1,NumArray2] call cos_dist) is a cosine of angle 'tween lines

[NumArray1, NumArray2] call e_dist – eucleadian distance. One of the most popular
metrics in machine learning

[Array1, Array2] call h_dist – Hamming distance 'tween the arrays, the number of
mismatches between corresponded positions. The fastest distance of all.
Arrays can contain elements of any type exept arrays, booleans and nil,
but I recommend to use only integers and strings. The arrays must be of single type -
not mixed

[NumArray1, NumArray2] call m_dist – «manhatten» or «city-block» distance between
arrays. One of the fastest to compute

[NumArray1, NumArray2] call k_dist – Canberra measure. Weighed variation of m_dist.
Use it if other metrics doesn't work good

[Data, Labels, K] call etalonLearn
alternative syntax:
[Data, Labels, K, DistFunction] call etalonLearn – creates array of etalons (arrays)of
length K, by compression original Data with «К means» clustering method and an array
of corresponded class labels.
2 functiones described below can use the result to get class labels of unclassified
points

[Etalons, ClassLabels, Point] call etalonUse
alternative syntax:

[Etalons, ClassLabels, Point, DistFunction] call etalonUse – determines class label of
Point by using class label of the nearest «etalon» - realization of popular «nearest
neighbor» method. DistFunction determines, what expression to use to calculate distance
between 2 arrays. Default method is e_dist

[Etalons, ClassLabels, Points] call etalonUseM
alternative syntax:
[Etalons, ClassLabels, Points, DistFunction] call etalonUseM – determines class labels
of all Points by using class labels of the nearest «etalons» - realization of popular
«nearest neighbor» method. DistFunction determines, what expression to use to calculate
distance between 2 arrays. Default method is e_dist

[Array, Condition] call getMatchArray – returns an array containing 1 where the
Condition is right when applied to curent Array element and containing zeroes — where
the Condition is wrong

[Data, K] call kmeans
alternative syntax:
[Data, K, DistFunction] call kmeans – find K clusters in multidimensional Data
by «k means» algorithm. It can be used to compress datasets. Don't use too big
K unless you want empty cluster problem and bad clasterisation as a result.
DistFunction determines, what expression to use to calculate distance between 2 arrays.
Default method is e_dist

[Array, Xpression] call makeDataRecords – call Xpression for each Array, element,
the result is a nested array, similar to database records.
Xpression sample:
{_x knowsAbout player}, {getDammage _x, skill _x}
Attention: don't enclose Xpression in quad brackets — an expression will be enclosed in
brackets automatically.
Purpose: get information from unit array to use in machine learning methods

[Array1, Array2] call match – percent of match between 2 equal-length arrays. Purpose:
in superwised learning it compares the original class labels of test data and class
labels calculated by some machine learning algorithm

NumArray call scale01 – scale an array to make all it's elements lay in range [0...1]

[NumArray, A, B] call scaleMinMax – scale an array to make all it's elements lay in
range [A...B]

[Data, Labels] call split4LearnAndTest
alternative syntax:
[Data, Labels, ratio] call split4LearnAndTest – split data and correspondent class
labels into learn and test sets. It's possible to define the percent of data to use in
learning part, recommended range is [25...75] percents or [0.25...0.75].
By default, the data and labels will be splitted into approximately equal-size parts.
The resulting array has 4 elements:
0 — data to learn (matrix);
1 — class labels to learn (array of 1 and 2);
2 — data to test (matrix);
3 — class labels to test (array of 1 and 2)

Practice: «Examples (part 1).Intro»

Markers

[MarkerName, Delay] call animateMarker
alternative syntax:
[MarkerName, Delay, ScaleFactor] call animateMarker – make MarkerName

pulse. Values of ScaleFactor lays in range [0...1000], ScaleFactor < 1 means that the
size of that marker will be reduced with pulsing.
Default value of scale factor is 0.5 – size of the marker will be decreased twice

[Unit, MarkerName] call attachMarker
alternative syntax:
[Unit, MarkerName, Delay] call attachMarker – attach marker to unit.
As an option, you can define delay of marker position updating

MarkerName call detachMarker – remove MarkerName from attachment script.
If you want to attach it again it's recommended to wait several seconds after
detachment

MarkerType call getMissionMarkers
alternative syntax:
MarkerTypeArray call getMissionMarkers – needs Fwatch 1.13+ to work,
returns all markers of given type(s) exept the user-defined ones

MarkerName call hideMarker – hides the marker by reducing it's size 5000 times

[«Marker1», Pos] call markerDist
alternative syntax:
[«Marker1», Unit] call markerDist
alternative syntax:
[«Marker1», «Marker2»] call markerDist – distance from «Marker1» to
something else

[Pos, MarkerArray] call nearestMarker
alternative syntax:
[Pos,MarkerArray, MaxDistance] call nearestMarker – find the closest to Pos marker in
MarkerArray. Option: the search radius

MarkerName call showMarker – makes hidden marker visible by restoring it's size (*5000)

MarkerName call stopMarkerAnim – MarkerName will be removed from animation script.
To animate this marker again it's recommended to wait several seconds

call userMarkers – an array of all existing user-defined markers on the map

Practice: «Examples (part 1).Intro»

Math

Number call ceil – ceiling, the smallest integer not less than Number

[Matrix, I]call column – select I-th column from the matrix

[Matrix, IntArray] call columns – select matrix columns, enumerated in IntArray.
Returns new matrix with reduced subarray size

Int call dec2bin – integer number — to array of 0 and 1

QuadMatrix call determinant – determinant of (quad) matrix, the matrix is not a movie
but array with equal-length subarrays, «quad» means what length of this array==subarray
length. To use in algebraic and applied geometry tasks

Int call digits – array of digits of integer number

Number call floor – the largest integer not greater than Number

[Number, Base] call log2arg – logarithm of Number with base Base

NumberArray call mean – arithmetic average

[Matrix, I, J] call minor – returns new matrix by removing row I
and column J from old Matrix. If I or J is less than 0, then this
row/column will be left on it's place

Array call mode – the most frequent element in Array

[Any, Nrows, NCols] call mtxBuild
alternative syntax:
[Array, Nrows, NCols] call mtxBuild
alternative syntax:
Array call mtxBuild – creates matrix — array with equal-length subarrays.

In first case it will be an array of Nrows rows (subarrays) and NCols columns
(subarray length), filled with element Any.
In second case the matrix will be filled with Array values.
In third case, if Array array length == N*N (quad of integer number) then
quad matrix (N rows, N columns) matrix will be created

QuadMatrix call mtxInverse – inverse of (quad) matrix — nested array
of equal-sized rows, the rows number==column number (length of row). To use in applied
geometry tasks

[Matrix1, Matrix2] call mtxProduct – multiply 2 matrixes according the rules of linear
algebra. Usualy not equal to this: [Matrix2, Matrix1] call mtxProduct

Number call round
alternative syntax:
[Number, NumbOfDigits] call round – round the number to the nearest integer or with
given precision

Number call sign – sign of number: -1 for negative values, 0 for 0, 1 for positive
numbers

[Array1, Array2] call vectorProduct – sum of pairwise products of 2 array elements

[bool, bool2] call xor – «exclusive or», analogue of A!=B for boolean vars

Practice: «Examples (part 3).Intro»

Random

NumArray call rndCase – random integer in range [0, (count NumArray)-1].
The bigger element from NumArray – the better probability of it's index _i.
Probability of presence of _i = «NumArray[_i] / SUM(NumArray)»

Array call rndElement – select random element from array. All elements can be picked
with the same probability 1/(count array)

[Array, NumArray] call rndElementPro – select random element with non-equal chances.
Probability of _i-th element selection:
«NumArray[_i] / SUM(NumArray)»

[Min, Max] call rndFloat – random float number between Min and Max

Max call rndInt – random integer 'tween 0 and Max-1 inclusive

call rndLandPos – random position on land. Works on islands with nonzero static objects
number

[Array, N] call rndSample – N random elements from Array, indexes are unique

[Array, N] call rndSample2 – N random elements from Array, indexes may be repeated

Array call shuffle — shuffle array randomly. Returns no result, Array will be changed

NestedArray call shufflePivoted – shuffles all NestedArray subarrays, saving pivot
between subarrays, i.e. all index rearrangements will be the same

Practice: «Examples (part 2).Intro»

Search

[Array, ConditionList] call bestFit
alternative syntax:
[Array, ConditionList, Weights] call bestFit — select element from Array, which fits
maximal number of conditions in ConditionList, if the importance of conditions is
different, their weight factors will be taken into account

[StringArray, String] call findString – returns the index of first occurance String in
StringArray returns -1 if such a string was not found. Case-insensitive

[Array, Var] call findAll – returns all indexes of occurance Var in Array or [] if
nothing found. The function is case-insensitive

[Matrix, ColNumber, Var] call findInColumn – returns index of the first occurance of
Var in column ColNumber of Matrix. Returns -1 if nothing found. The function is case-
insensitive

[Array, Var] call findInNested – returns index of the first subarray which contains Var
or [] if no such subarrays. The function is case-sensitive

NumArray call max – array maximum

NumArray call min – array minimum

[Array, Database] call selectByKeys – returns subarrays of Database
with the keys (0-th elements) present in Array. The function is case-sensitive

[ExprWHERE, arrayFROM] call sqlDelete – removes records from arrayFROM according SQL-
like query exprWHERE.
ExprWHERE often contains comma-separated field names from arrayFROM(0), name _i —
record index is also available; an expression result must be true or false.
The names mentioned in exprSELECT and in the consequent expressions must be present in
arrayFROM table and starts from underscore.
arrayFROM example with 2 records:
[
 [«_Name», «_Armor», «_GunCaliber»],
 [«T55G», 300, 105],
 [«ZSU», 250, 23]
]
ExprWHERE sample: «(_Name=={ZSU}) or (_Armor<300)».
It's also possible to use true to remove all records.
sqlDelete returns no result, source table arrayFROM will be changed

[exprSELECT, arrayFROM] call sqlSelect
alternative syntax:
[exprSELECT, arrayFROM, exprWHERE] call sqlSelect
alternative syntax:

[exprSELECT, arrayFROM, exprWHERE, exprORDERBY] call sqlSelect - returns records
(array of equal-structure arrays) from arrayFROM according SQL-like query.
ExprSELECT often contains comma-separated names from arrayFROM(0), name _i — record
index is also available.
ExprSELECT example:
«_Name, _Armor+100, _MainCaliber».
It's also possible to use «*» to get full records.
The names mentioned in exprSELECT and in the consequent expressions must be present in
arrayFROM table and starts from underscore.
See an example of arrayFROM in sqlDelete description.
ExprWHERE — expression which must return true or false, for example
{(_Name==«ZSU») or (_Armor<300)}.
ExprORDERBY — expression which must return number, used to sort the resulting array. By
default, ascending sort used, expression {-_Armor} will sort the result in descending
order of _Armor field.
Source table arrayFROM will not be changed

Practice: «Examples (part 3).Intro»

Sort

All functions mentioned below but merge2sorted has no result, but they reorder original
array(s)

NumArray call bSort – sort array in ascending order. Method – bubble sort.
Very slow on big arrays, but good for arrays of length < 10

NumArray call bSort2 – sort 2 arrays in ascending order of first one. sort array in
ascending order. Very slow on big arrays, but good if length of subarrays < 10

NumArray call qSort – sort array in ascending order. Method – quick sort

[Array, Sample] call qSortByExample – sort Array elements in order of these
match indexes in Sample, for example in alphabet.
Method – quick sort

[Array, Expression] call qSortByExpr –
sort Array in ascending order of Expression applied to each array element.
Method – quick sort

[NumArray, Array1, Array2...ArrayN] call qsortM – sort nested array by ascending order
of subarray[0]. Method – quick sort

[Array, I, J] call idxSwap – swap two indexes in array

Array call inverse – inverse the order of elements in Array

[Array1, Array2] call merge2sorted — merge 2 arrays sorted in ascending order. The
result array is also sorted in ascending order

Practice: «Examples (part 3).Intro»

System

[«DASH_temp_array», «DASH_another_crap»] call deleteGlobals – removes several global
variables. Returns no result

[var1, var2, … varN] call findLostVar – returns index of the first not-defined variable
in the list (or first nil element in array). Returns -1, if all vars were defined

(or no nil elements)

call fw113 — true, if Fwatch 1.13+ on.
Several functions don't work WITHOUT Fwatch, another few good fns works even better
WITH it

call getLanguage – return the selected game language.
Available variants: «Spanish», «Czech», «English», «Italian», «German», «French»,
«Russian». Not recognised language is considered as «English»

AddonName call isAddonLoaded – checks if addon/mod AddonName is present.
Mods are to be written with «dog»: «@BWMod» call isAddonLoaded.
There are about 20 signatures for mods and 210 – for addons in database.
Function works only first 60 seconds of mission, than the database will be
cleaned. For addons with own stringtable.csv or with cfgAmmo in config.cpp
the rate of this function is very fast, for most infantry packs it's slow
like the snail. All addons found are stored in temp. subarray, so the second search of
the same addon is faser. You will see “hint” message, if the addon is not found
in database

«VarName» call isNil – returns true, if VarName variable is not defined,
or destroyed by {VarName=nil} expression

Key call optionGet – returns correspondent value from global associative array

[Key, NewValue] call optionSet – sets new value for key of global associative array.
Not existing key will be created and initialized with NewValue

Var call print – formats Var to string and shows it to player with sideChat command

[PropOwner, StrPropName] call propGet – returns the value of user-defined property
StrPropName from PropOwner. PropOwner can be unit, group or fictitios object defined by
string. Returns any value, but if no such PropOwner or no such property in his property
set - then «undefined» string will be returned

[PropOwner, PropName1, PropName2...] call propsRemove – removes one or more user-
defined properties belonged to PropOwner (unit, group, string or side).
Returns no result

[PropOwner, StrPropName, Value] call propSet – sets user-defined property StrPropName
belonged to PropOwner (unit, group, string or side) to Value

[OwnersArray, p1, v1, p2, v2...] call propSetM – gives the same property set for each
unit, group or string in OwnersArray. Successfully tested on 361 unit with 50
properties of different type, including arrays

Expression call test – prints Expression and it's (separated with double line) result
with hintC command. Arrays are shown with indents and newlines to demonstrate their
stucture, maximal number of strings to show = 32, if there are some more lines – the
ellipsis will be used.
If no result returned, fore example, {a=5}, or some of Expression arguments was equal
to nil — then only Expression will be printed.
It doesn't work if an Expression returns trigger or camcreated object because of
varTypeSafe usage. It mentioned to use in scripts, if you want to call it several times
– use delay ~2 or at least ~0.01 between calls of test

Variable call varType – returns variable type, it can be
«number», «string», «array», «bool», «side», «object», «group» or «trigger».
Don't use strings with length > 2000 symbols (2Kb) — otherwise you'll see CWA crash.
With big arrays works fine

Variable call varTypeSafe – returns the variable type, can return
«number», «string», «array», «bool», «side», «object» or «group».
It cannot crash CWA, but «stumbles» over many camcreated/map static objects and (with
Fwatch off) on triggers too (error message will be thrown)

[Condition, Xpression] call whileDo – works similar to while Condition do Xpression,
but not limited in number of iterations. Iteration limit for «while» loop = 10 000,
you can also use forEach loop to work around this problem

Practice: «Examples (part 1).Intro», «TestCampaign»

Text

Any call alphabet – returns char array of 26 latin chars. If an argument is in 1, «l»,
or «L» - array will be in lower case, otherwise it will be in upper case

[Array, strDelimiter] call array2Report
alternative syntax:
[Array, strDelimiter, bUseEnds] call array2Report – format array as a report, using
strDelimiter and (as option) endings to non-unique elements

[Array, FormatSingle, FormatPlural, Delimiter] call array2ReportFMT – format array as a
report, using string FormatSingle to format unique elements, FormatPlural — for non-
unique elements and string Delimiter to separate elements
In string FormatSingle «%1» means array element,
in string FormatPlural «%1» means element and «%2» means number of such an element
in array

Array call array2string
alternative syntax:
[Array, StrDelimiter] call array2string -
format array to strings, elements will be separated with StrDelimiter if an array has
count == 2 or with «» in other cases

[Array_of_CharArrays, CharArray] call catAfter
alternative syntax:
[Array_of_ Strings, String] call catAfter – add string/char vector to the end
of each string/CV array element

[Array_of_CharArrays, CharArray] call catBefore
alternative syntax:
[Array_of_ Strings, String] call catBefore – add string/char vector to the start
of each string/CV array element

CharArray call cv2string – join characters/strings to get 1 string.
Created to work with small char vectors (count < 20)

[CV1, CV2] call editDistance – measure of difference between 2 character vectors of any
length, shows how difficult to edit one world to get another one. Added or removed char
have fixed cost==2. An expression to get character replacement cost can be set globally
with fzTextProps, default value is {1}, in general case it will be 2-argument function

[CV1, CV2]call endsWith
alternative syntax:
[CV1, CV2, bIgnoreCase] call endsWith – returns true, if char vector CV1 ends with
CV2. Optional parameter «ignore case» (true/false) has default value «true»

Unit call firstName — unit's name (without surname). Fwatch 1.13+ required

[CV1, CV2] call cosineCVCVDistance – cosine distance between char vectors, the result
lays in range [0...1], it's the result of implementation cos_dist for arguments,
prepared with symbolCounts. Works with char arrays of different lenght.
Advantage: not affected with letter rearrangements – one of the most popular error in
man-printed texts.
Disadvantage : anagramms like [«e», «a», «t»] and [«t», «e», «a»] are always get
error==0 (complete match)

[String, CV] call FuzzyStrCVCompare – returns true, if there are less than 2
missmatches between given string and char vectors. Mismatch means here "added letter,
missed letter or replaced letter". With Fwatch on it's more convinient to use
fzTextMatch instead

[Text1, Text2] call fzTextMatch
alternative syntax:
[Text1, Text2, MaxError] call fzTextMatch – returns true, if the error of fuzzy text
comparison less of or equal to MaxError. There are 2 different comparison methods:
«edit»- editDistance and «cosine»-cosineCVCVDistance. Text1 and Text2 can be both
strings or char vectors or string and char vector.
With Fwatch 1.13 on string arguments will be splited into symbols and than compared
like char vectors.
Without Fwatch 2 char arrays comparison is just the same («edit» or «cosine»), 2
strings will be compared in simplest (==) way and in mixed case
[CV, String] or [String, CV] - FuzzyStrCVCompare function will be used — this method
is not so useful like «edit» and «cosine» but better than nothing

[Array1, Array2] call inStr – the position in Array1,
from there Array2 starts from, -1 if these array is not the subsequence of Array1.
Created to work with char arrays, but works with numeric ones too

Unit call lastName — unit's surname. Need Fwatch 1.13+

CharArray call lCase – character array to lower case

Number call nth – numerics:
1 ==> «1st», 12 ==> «12th»

CV call removeOFPECtag: remove tag from the head of class name (weapon, unit, ammo ...)
splitted into chars so it will be more useful for reports. Tags with underscore like
[«S», «L», «X», «_»] will be always removed, tags without it, for example
[«K», «E» ,«G»] firstly must be found in database, so sometimes it won't work

[StrArray1, StrArray2] call removeStrings – remove one string/«char» array from another
ignoring case

[CV, CV_Old, CV_New] call replaceCV – replace the first found subsequense of characters
CV_Old in character array CV with CV_New. Returns new array

[Array, Delimiter] call split – splits Array into subarrays, using Delimiter.
Aimed to work with char arrays, but must work with other types exept booleans.

[CV1, CV2] call startsFrom
alternative syntax:
[CV1, CV2, bIgnoreCase] call startsFrom – returns true, if character vector
CV1 starts from CV2. Optional parameter «ignore case» (true/false) has default value
«true»

String call string2CV — split the string into characters (strings of length 1).
Fwatch 1.13 required

[CV, StartIdx, EndIdx] call subStr – returns new array, maked of original array's
elements from index StartIdx to index EndIdx. Works with arrays of any type

Char Vector call symbolCounts – returns numeric vector of length 36, which shows, how
many time 26 letters and 10 digits were encountered in character vector

CharArray call uCase – character array to upper case

Practice: «Examples (part 2).Intro»

Vehicles

Veh call canFire2 – modification of canFire command, it also checks for some weapons
and ammo. Binocular, NVG and CarHorn are not mentioned as weapons

Veh call canMove2 – modification of canMove command, it also checks fuel level

Veh call cargo – array of units in cargo section of Veh

Veh call effectiveCommander – who is in charge in Veh?

UnitArray call enableQueryVehicles – creates inner unit array to make getVehicles
function work. It doesn't usefull with Fwatch 1.13+ on

VehType call getVehicles
alternative syntax:
ArrayofTypes call getVehicles – works better with Fwatch 1.13, returns array of objects
(vehicles or empty objects), belonged to class VehInfo or to it's child classes or
matching to one of classes from VehInfo. To work without Fwatch you need big trigger of
activation type Any - Present and enableQueryVehicles function

Veh call hasCommanderPlace – has the vehicle commander's place?

Veh call hasDriverPlace – has the vehicle driver's place?

Veh call hasGunnerPlace – has the vehicle gunner's place?

[Unit, VehInfo] call knownVehicles
alternative syntax:
[Unit, VehInfo] call knownVehicles
alternative syntax:
[Unit, VehInfo, Knowledge] call knownVehicles
alternative syntax:
[Unit, VehInfo, Knowledge, BlackList] call knownVehicles – find all vehicles/empty
objects known by Unit, belonged to class VehInfo or to it's child classes or matching
to one of classes from VehInfo, with Unit knowsAbout _x value >= Knowledge (if not
defined — 1.4) and not present in object array BlackList, if it was defined.
Returns 2 arrays – array of objects and array of «knowsabout» values, so objects can be
sorted by knowledge. To work without Fwatch you need big trigger of activation type Any
- Present and enableQueryVehicles function.

[PosInfo, VehInfo] call nearbyVehicles
alternative syntax:
[PosInfo, VehInfo] call nearbyVehicles
alternative syntax:
[PosInfo, VehInfo, Radius] call nearbyVehicles
alternative syntax:
[PosInfo, VehInfo, Radius, BlackList] call nearbyVehicles – find all vehicles/empty
objects near PosInfo (unit or position) of class VehInfo or belonged to it's child
classes or matching to one of classes from VehInfo, with distance from PosInfo not
exceeding Radius (default value=50 m) and not present in object array BlackList, if it
was defined. Returns 2 arrays – array of objects and array of distances, so objects can
be sorted by distance. To work without Fwatch you need big trigger with activation type
Any - Present and enableQueryVehicles function

[PosInfo, VehInfo] call nearestVehicle
alternative syntax:
[PosInfo, VehInfo] call nearestVehicle
alternative syntax:
[PosInfo, VehInfo, Radius] call nearestVehicle
alternative syntax:
[PosInfo, VehInfo, Radius, BlackList] call nearestVehicle – find nearest vehicle/empty
object near PosInfo (unit or position), of class VehInfo or belonged to it's child
class or matching to one of classes from VehInfo, with distance from PosInfo not
exceeding Radius (default value=50 m) and not present in object array BlackList, if it
was defined. Returns object. To work without Fwatch you need big trigger of activation
type Any - Present and enableQueryVehicles function.

[Veh, NewSpeed] call setSpeed – immediately set the speed of Veh to NewSpeed

Unit call vehicleRole — name of unit's position in vehicle.

Possible results: «Driver», «Gunner», «Commander», «Cargo», «None»

UnitArray call vehicles — returns array of vehicles occupied by UnitArray

Practice: «Examples (part 3).Intro»

STOLEN BORROWED

Some of the mentioned functions are renamed and/or reworked variants of code
created by experienced OFP scripters.
I also implemented a few generic scripting ideas of these and other «OFP jedies».
Respect comes to:

Baddo — countBuildingPos;

BINMOD team - dirOfMove, vehicleRole;

Bn880 — varType;

The Chain of Command band - transpose and idea of Neural Network for OFP;

DenVdmj — formatOut, findLostVar, varType, varTypeSafe, invQueryCargo, sideUnknown
constant and the example of test campaign;

Dschulle — grid2pos;

ECP mod squad — global resource array conception;

Faguss - qsort, qsortM, fwatchIsOn, string2CV, help with Fwatch command
«:class token» usage;

FOX2 — pos2grid;

Fragorl — idea of user-defined properties;

General Baron - findString, squadNumber, squadOrder;

Igor Drukov — relPos2d;

Invasion44 mod creators — «sqf-database» conception;

KTottE - pop, pushNew;

LIBMOD gang — cargo;

Mandoble — inFOV;

MCAR project personnel — an idea to use stringtable.csv as a SQF code storage;

Mr.Peanut - elevation, highestLowest;

Raptorsaurus - elevationAngle, inForest, groundSlope;

SLX mod developers - radioState;

snYpir — dir2obj;

Spooner — getLaserDot;

Toadlife — watchDir;

Vectorboson - groupIsCargo, getGroupSpeed, getGroupSpread,
mostInjured, filterGroups, nth, shuffle, array2report
+ idea of Rnd.sqf module, nowdays added to csv
+ help with isNil, rndFloat and varType improvement;

Special thanks:

DenVdmj - BIS scripting comref translation + detailed scripting reference;

Dschulle — PBOX utility;

Lone~Wolf — Notepad++ plugin for SQF/SQS code highlighting;

Kegetys and Faguss — creation and improvement of Fwatch program;

Notepad++ team — for the best notepad ever;

Razorwings18 — OFPDialogueMaker utility;

Rinzzza — «all-in-one» OFP manual

