

OFP Preprocessor Explained

I. Introduction

1. Who is this document for?

 For those writing custom configurations and dialog files for Operation Flashpoint.

Here you’ll find explanation of the preprocessor directives which will improve your

code.

2. What is a preprocessor?

 It is a program that prepares (transforms) code for further interpretation /

compilation. Modification occurs in the memory and the file is not overwritten.

 OFP preprocessor is a stripped down version of C preprocessor (similar syntax,

less capabilites).

3. Which files are being preprocessed?

 Every file with C-like syntax: config.cpp, resource.cpp, description.ext, mission.sqm

and so on. Also, files loaded using preProcessFile command.

4. When the files are preprocessed?

 Global configuration and resource, addon configs, user settings – during the

launch of the game.

 mission.sqm, description.ext – every time you open the mission. In Mission

Editor – every time you load / save the mission.

 Files loaded with preProcessFile – when that command is executed.

II. Commands

1. Syntax

 Directive must be written in a new line, preceded only by a whitespace.

 Directive starts with a ‘#’ (hash) character.

 All directives must be written in lower case.

2. Order of execution

 Preprocessor analyzes the code line by line and does not retract. For example, a

macro written before it was defined won’t work (more on macros later).

3. Comments

Comments (text used to describe a code) are indicated by:

They are removed by the preprocessor so the game does not “see” them.

// human class
class MySoldier
{
 /* his properties:

- super armor */
 armor = 500
};

// double slash - single comment line
/* slash asterisk – comment block */

4. #include

Copies the code from a target file and pastes it where #include directive is.

Brackets are equal to quotation marks.

 Source directory is:

 for description.ext, addon configs – game root folder (where exe file is)

 for global config and resource – their source folder

Alternatively you may write a path starting from drive:

To move to parent directory use ‘..’ (two dots):

Addons location is saved to memory. To include file from one of them write:

OFP preprocessor does not support computed includes (macro for file name).

This code will cause an error. Macros will be explained later.

How to make description.ext include one of the mission files:

 Mission is not packed and is located in the user folder.

 Mission is packed (PBO) and is located in the SP / MP missions folder.

#include "missions__cur_sp.<island>\<file name>" // SP
#include "mpmissions__cur_mp.<island>\<file name>" // MP

#include "Users\<user name>\missions\<mission>\<file>" // SP
#include "Users\<user name>\mpmissions\<mission>\<file>" // MP

#define path "codestrip.txt"
#include path

#include "<addon folder name>\<file>"

#include "..\codestrip.txt"

#include "d:\temp\codestrip.txt"

#include "codestrip.hpp"
#include <codestrip.txt>

5. #define

 Creates a macro (alias, shortcut if you prefer). Macros written in the code replace

(expand) themselves with the text assigned to them. Syntax:

For example:

 After preprocessing:

Names consist of alphanumeric characters, starting with a letter.

Other characters count as content.

In this example 'a10' is the name and content is '.a'.

Names are case sensitive.

It’s possible to give the macro a class property name.

 It will be replaced with:

Define your macros carefully.

1 = 1

#define armor 1
armor = 1

#define something 1
#define Something 2

#define a10.a

#define 10 // wrong
#define a10 // correct

x = 0.5

#define dialogX 0.5
x = dialogX

#define <name> <content>

You may assign multiple lines with ‘\’ (backslash).

This expands into a single line:

Backslash must be the last character in the line. Otherwise it won’t work.

Macro name inside a quote is ignored by the preprocessor.

Game will display something, not 10.

Defining the same macro again updates it.

It will expand into:

You can place a macro inside other macro.

Results in:

Preprocessor looks for other macros at the moment of expanding.

buy cake

#define something cake
#define shopping buy something
shopping

x = 10

#define something 1
#define something 10
x = something

#define something 10
text = "something"

x=0.5; y=0.5; w=0.2; h=0.2;

#define properties x=0.5; \
y=0.5; \
w=0.2; \
h=0.2;

6. #define with arguments

There are two types of macros:

 Object-like (replaces A with B)
 Function-like (replaces A with B with given arguments)

Function-like macro is defined by adding parenthesis:

Output:

 It’s not possible to have both object-like and function-like macros with the same

name. The new one simply replaces the old one.

Arguments are local macros themselves. They cannot be replaced by a global macro.

The result:

 Number of the passed arguments must be accurate. Otherwise the macro won't

work. You may leave any argument empty but you'll have to add commas in between.

Other macros can be passed as arguments, including function-like ones:

Expands into:

2 + 2 + 2

#define add(arg1,arg2) arg1 + arg2
add(add(2,2),2)

#define myFunction(arg1,arg2,arg3)
myFunction(,2,)

2 + 2

#define arg1 0
#define add(arg1,arg2) arg1 + arg2
add(2,2)

2 + 2

#define myFunction()
#define add(argument1, argument2) argument1 + argument2
add(2,2)

 Every passed character is included – arguments are not formatted by the

preprocessor.

Output:

 space ,/* comment */,
new line

#define Display(arg1,arg2,arg3) arg1,arg2,arg3

Display(space ,/* comment */,
new line)

7. # ‐ stringification operator

 To be used in macro definitions. ‘#’ (single hash) operator wraps the text with

quotation marks. Syntax:

Example:

Expands into:

8. ## ‐ concacentation operator

 To be used in macro definitions. You can merge two macros or text and a macro

together using ‘##’ (double hash). It works like ‘+’ operator in C-like languages.

Syntax:

Example of merging macro arguments and underscore:

Output:

Adam_Smith

#define glue(arg1,arg2) arg1##_##arg2
glue(Adam,Smith)

<text1>##<text2>

text = "semi;colon"

#define stringify(argument) #argument
text = stringify(semi;colon)

#<text>

9. #undef

Removes a macro. Syntax:

Example:

Result:

This directive has no effect if given argument is not a macro.

 Non-alphanumeric characters are ignored but not removed from the file. They will

most likely cause a config syntax error.

Don't write parenthesis when erasing function-like macro.

#undef myFunction(arg1) // wrong
#undef myFunction // correct

#undef something...

x = something

#define something 4
#undef something
x = something

#undef <name>

10. #ifdef, #endif – conditional inclusion

 OFP preprocessor supports conditional directives but only those related to macros.

#ifdef checks if given macro has been defined. If so, the preprocessor includes all

instructions until it encounters #endif. Syntax:

Block may contain standard code and other directives as well. Example:

Result:

It’s possible to nest conditions.

#ifdef treats non-alphanumeric characters like the macros do.

 Here a10 is the condition and .a is a part of the code block.

#ifdef a10.a

#ifdef rocket_launcher

 #ifdef magazine_name

 magazines[] = { magazine_name, magazine_name };
#endif

#endif

class mySoldier
{

armor = 50
displayName = smith

};

#define something 10

#ifdef something
 #define adam smith

class mySoldier
{

armor = 50
displayName = adam

};
#endif

#ifdef <name>
<code block>
#endif

11. #ifndef

 It’s similar to #ifdef but checks if the macro has not been defined.

12. #else

 To be used in condition code block. Instructions written after this directive are

included if the condition has not been met. Example:

Result:

x = 0

#ifdef something
 x = 1
#else
 x = 0
#endif

#ifndef something
 x = 0
#endif

III. Usage

1. Comments

 Adding code description is very important. You may perfectly comprehend structure

of your work now but after some time you’ll forget it. Also other people viewing your

files may have a better chance to learn something if you’ll leave some information.

 Write comments to describe elements / mechanics of your code.

2. Including files

 It’s very convenient to break big files into smaller pieces, each holding classes of

one type.

Other application could be to have files that read global user settings.

3. Macros

 Macros are used to replace repeatable segments of the code. Object-like macros

create constant values. For example:

#define human_armor 500

Operation Flashpoint\UserSettings.hpp:

 #define human_armor 500

Addon Config.cpp:

 #include "UserSettings.hpp"

armor = human_armor

Config.cpp:

 #include "CfgPatches.hpp"

#include "CfgModels.hpp"
 #include "CfgVehicles.hpp"

Now if you’ll use it in every soldier class...

... it will be very easy to adjust it, without the need to poke every value.

 Function-like macros are used to shorten similar but not identical chunks of code.

For example defining soldier classes:

4. Conditions

 Conditions let you send alternative version of your code to the game. For example:

you can set up user custom options or a debug mode.

You may also keep old parts of the code in case you’ll need to revert.

#define old_version

#ifdef old_version
 class oldSoldier {};
#else
 class newSoldier {};
#endif

#define Difficulty_Easy

 #ifdef Difficulty_Easy
 #define human_armor 500
 #endif

 #ifdef Difficulty_Hard
 #define human_armor 100
 #endif

#define MakeSoldier(CLASSNAME, DISPLAYNAME) \
class CLASSNAME : soldierWB \
{ \
 displayName = DISPLAYNAME; \

armor = human_armor; \
};

MakeSoldier(my_regular, "Regular")
MakeSoldier(my_sniper, "Sniper")
MakeSoldier(my_engineer, "Engineer")

class mySoldier
{
 armor = human_armor
};

IV. Errors

 If you’ll make a mistake the game process will be terminated and message with error

code will appear.

0 – Incorrect condition

Missing #endif after condition statement.

1 – Incorrect include

 Preprocessor could not add file you selected with #include directive because it

doesn’t exist OR it's not a text file.

2 – Incorrect include

Missing brackets after #include directive.

4 – Incorrect macro

Macro argument definition is wrong because:

 there is a non-alphanumeric character inside parenthesis.
 name does not start with a letter.
 parenthesis has not been closed.

#define myFunction(a..) 2 + a.. // illegal character

#define myFunction(10) 2 + 10 // starts with number

#define myFunction(arg1, // missing bracket

#include something
#include

#ifdef something
 x = 1

6 – Incorrect condition

Missing condition statement before #endif.

7 – Unknown directive

You have entered a command which is not supported by the preprocessor.

11 – Incorrect argument

Condition argument OR #undef argument is wrong because:

 name does not start with a letter
 argument is missing

12 – Incorrect condition

Missing #endif after #else.

#ifdef something
 x = 1
#else
 x = 0

#undef 10a // starts with number
#ifdef // no argument
#ifdef .a10 // no argument, .a10 counts as content

#something
#DEFINE something 10

armor = 1
#endif

V. Afterword

 Research source:

http://gcc.gnu.org/onlinedocs/cpp/index.html

 The preprocessor gives you potential to write shorter and more flexible code.

 Have fun

 Faguss (ofp-faguss.com)

