
LIFT SCRIPT

 Welcome

 If you are interested in how the lift from TatooineCityCheck works and want to use it in your
mission, here you’ll find information how it works.

 1. Theory

 I assume you have already have seen lift movement. It’s not a move, actually. It’s a teleportation
in a little intervals for a short distance, so it would appear as a smooth move. Player is teleported
as well.

 Plan:

 It moves: vertically (turning 180 degrees) and then horizontally or vice versa.

Movement will be performed by server while client only gives a signal to start.

 2. Practice – Introduction

 For your own lift you will need start and destination coordinates. Here are values for my lift:

 As you can see, on the picture below, lift door is on it’s „back”.

 The building in my mission has azimuth 275° so the lift’s will be 95° (when down) or 275°
(when up). Player’s direction will be [lift azimuth]-180 (he will face the exit).

 3. Practice

 We have three triggers providing
when someone is inside the lift.

 In this mission call object’s name is

 All triggers are set to:

Global variables are used in this part:

LIFT_LEVEL – indicates current lift position (1
 zero when lift is moving.

 LIFT_USER – indicates unit inside the lift.

Practice – Mission Editor:

s providing action to use the lift. Triggers A and B are

name is telefon and lift’s - lift.

are used in this part:

indicates current lift position (1 – down, 2 – up). This value is less than
zero when lift is moving.

indicates unit inside the lift.

Mission Editor:

 placed to work only

up). This value is less than

Trigger A:

Condition: when the lift is down and anybody is in
Activation: if first unit inside is player then add action
Deactivation: remove action and reset variable

Trigger B:

Condition: when the lift is
Activation: if first unit inside is player then add action
Deactivation: remove action and reset variable

Trigger C:

Condition: when the lift is
Activation: add action
Deactivation: remove action

Place Game Logic and name it server

 Call object is dummy but in

&& alive telefon

So when it’s destroyed, trigger won’t work.

 To use the lift with AI remove code checking if unit is a player. Now you may
use radio command to execute
Moreover the action will appear in your menu if you are close to

when the lift is down and anybody is inside
if first unit inside is player then add action
remove action and reset variable

when the lift is up and anybody is inside
if first unit inside is player then add action
remove action and reset variable

when the lift is up and player is nearby

remove action

server.

Call object is dummy but in Trigger C condition field you can add:

alive telefon

when it’s destroyed, trigger won’t work.

To use the lift with AI remove code checking if unit is a player. Now you may
use radio command to execute the action.
Moreover the action will appear in your menu if you are close to the unit.

To use the lift with AI remove code checking if unit is a player. Now you may

the unit.

 4. Practice – Initialization

LIFT_LEVEL=1 //reset global variables

LIFT_USER=objnull

? local server : [] exec "Lift_Server.sqs" //server executes script

 5. Practice – Client-Side

player removeaction liftaction

LIFT_LEVEL=LIFT_LEVEL*-1 //change to negative value

publicvariable "LIFT_LEVEL" //signal server

? LIFT_USER!=player : exit //code below works only if unit is inside

#Loop //loop fixing unit’s direction while lift is moving

player setdir (getdir lift-190)
~0.001
? LIFT_LEVEL>0 : exit
goto "Loop"

 Direction fixing has to be done on client’s computer. Otherwise player’s screen would warp.

 6. Practice – Server-Side

Code plan:

_pX=958029
_pY=407358

_pZ=0

~0.001
_fixX=getpos lift select 0; _fixY=getpos lift select 1
~0.001
lift setpos [9580.29,4073.58,0]

_fixX=(getpos lift select 0)-_fixX; _fixY=(getpos lift select 1)-_fixY
lift setpos [_pX/100-_fixX,_pY/100-_fixY,_pZ/10]

#Wait
@LIFT_LEVEL<0
_user=LIFT_USER

_reverse=1
_move="V"
? LIFT_LEVEL==-2 : _reverse=-1; _move="H"

Define variables

Wait for signal

#Movement
~0.01
? _move=="V" : _pZ=_pZ+(2*_reverse); lift setdir (getdir lift-(2.25*_reverse))
? _move=="H" : _pX=_pX-(10*_reverse); _py=_py+(1*_reverse)

{_x setpos [_pX/100-_fixX, _pY/100-_fixY, _pZ/10]} foreach [lift,_user]

_fixX2=(getpos lift select 0)-(_pX/100); _fixY2=(getpos lift select 1)-(_pY/100)
{_x setpos [_pX/100-_fixX-_fixX2, _pY/100-_fixY-_fixY2, _pZ/10]} foreach [lift,_user]

? _move=="V" && _pZ>=160 : _move="H"; goto "Movement"
? _move=="H" && _py<=407358 : _move="V"; goto "Movement"

? _move=="V" && _pZ<=0 : LIFT_LEVEL=1; publicvariable "LIFT_LEVEL"; goto "Wait"

? _move=="H" && _py>=407394 : LIFT_LEVEL=2; publicvariable "LIFT_LEVEL"; goto "Wait"
goto "Movement"

a) Variables

_pX, _pY, _pZ //lift position

Assign them start coordinates multiplied by 100 (X, Y axis) and by 10 (Z axis).

 That’s why I’ve converted coordinates to natural numbers. Later, when placing object, they will
be divided back to fractions.

Following code finds values to fix the lift position.

_fixX and _fixY indicates the difference between real position and typed coordinates.

b) Wait for activation

 Server-side script is looped checking if the lift has been activated (LIFT_LEVEL<0). If so, then it
resets local variables:

_user //unit inside the lift

_reverse //movement modifier (1 – lift is going up, -1 – going down)

_move //indicates move type („V” – vertical, „H” – horizontal)

 Variables are set for ascending by default but if the lift is moving down the values get switched.

Move loop

 In OFP operations on fractions are inacurate if being looped.

 In OFP real object position is not equal to numbers returned by getPos

command. Comparing getPos value to number is inaccurate.

 If you place object by setPos it won’t be placed in the exact position you’ve

typed.

c) Move

? _move=="V" : _pZ=_pZ+(2*_reverse); lift setdir (getdir lift-(2.25*_reverse))
? _move=="H" : _pX=_pX-(10*_reverse); _pY=_pY+(1*_reverse)

 Change position depending on type (_move). Moving down is a reversed move up (rate is
multiplied by -1). Movement rates are the numbers in brackets.

 I haven’t converted turning rate to natural number because it’s less important than object
position.

{_x setpos [_pX/100-_fixX, _py/100-_fixY, _pZ/10]} foreach [lift,_user]

_fixX2=(getpos lift select 0)-(_pX/100); _fixY2=(getpos lift select 1)-(_pY/100)

{_x setpos [_pX/100-_fixX-_fixX2, _py/100-_fixY-_fixY2, _pZ/10]} foreach [lift,_user]

 This code places lift and its user, calculates difference between current position and ordered
position (_fixX2, _fixY2) and finally sets object in the right position.

 When object’s direction is changed its position is modified as well. That’s why it needs to be fixed
again.

? _move=="V" && _pZ>=160 : _move="H"; goto "Movement"
? _move=="H" && _py<=407358 : _move="V"; goto "Movement"

 When lift reaches its destination the script switches movement type.

? _move=="V" && _pZ<=0 : LIFT_LEVEL=1; publicvariable "LIFT_LEVEL"; goto "Wait"

? _move=="H" && _py>=407394 : LIFT_LEVEL=2; publicvariable "LIFT_LEVEL"; goto "Wait"

 When lift reaches its final destination the script changes LIFT_LEVEL variable and synchronizes
it with other clients.

 Once you set one of the movement rates, you can calcutate the other one using
simultaneous equations:

 �� � ��� � �	 ��, �� - initial lift coordiantes �� – movement rate in X axis
 �	, �	 - lift destination �� – movement rate in Y axis
 �� � ��� � �	 L – number of loops

 Same goes to turning rate:

 %� � �%& � %	 %�, %	 - initial and final height
)�,)	 – initial and final direction
)� � �)& �)	 %& ,)& – movement rate in Z axis and turning rate

